Minggu, 03 April 2011

KAIDAH-KAIDAH PENURUNAN SUATU FUNGSI

Kalkulus Diferensial
Walaupun tabel dan grafik bermanfaat untuk menjelaskan konsep-konsep hubungan ekonomi, tetapi persamaan seringkali lebih cocok digunakan dalam poses pemecahan masalah. Salah satu alasannya adalah teknik analisis kalkulus diferensial bisa digunakan untuk menentukan nilai maksimum dan minimum dari suatu fungsi tujuan secara efisien melalui analisis marginal. Pendekatan kalkulus sangat bermanfaat bagi masalah optimasi terkendala yang merupakan cirri dari proses pembuatan keputusan manajerial.
Kita telah mendefinisikan nilai marginal sebagai perubahan nilai variable dependen yang disebabkan oleh perubahan satu unit suatu variabel independen.
Perhatikan fungsi Y = f(x), dengan menggunakan tanda delta ( ∆) sebagai tanda perubahan , kita dapat menunjukkan perubahan nilai variable independen ( x ) dengan notasi ∆X dan perubahan variable dependen ( Y ) dengan notasi ∆Y. Perbandingan ∆Y/∆X menunjukkan suatu spesifikasi umum dari konsep marginal :
Marginal Y = ∆Y/∆X
Perubahan Y yaitu ∆Y dibagi dengan perubahan X yaitu ∆X menunjukkan perubahan variable dependen yang disebabkan oleh perubahan satu unit nilai X. Secara konseptual , suatu turunan suatu spesifikasi yang tepat dari hubungan marginal secara umum, ∆Y/∆X . Untuk mendapatkan suatu turunan kita harus mendapatkan nilai rasio ∆Y/∆X untuk suatu perubahan variable independen yang sangat kecil. Notasi matematis untuk sebuah turunan adalah :
dy/dX = lim ∆Y/∆X
x→0
Notasi tersebut dibaca “ turunan Y pada X sama dengan limit dari ∆Y/∆X jika X mendekati nol” Konsep turunan sebagai limit dari suatu rasio adalah sama dengan slope dari sebuah kurva pada sebuah titik. Slope menunjukkan perubahan marginal Y yang disebabkan oleh suatu perubahan X yang sangat kecil pada titik tersebut. Misalkan variable dependen Y adalah penerimaan total (TR) dan variable independen adalah output . Maka turunan dY/dX menunjukkan bagaimana hubungan antara penerimaaan dengan output pada suatu tingkat output tertentu. Oleh Karena perubahan penerimaan yang disebabkan oleh perubahan output didefinisikan sebagai penerimaan marginal (MR) maka turunan TR adalah sama dengan MR pada setiap output tertentu.
Keadaan yang sama terjadi untuk biaya total atau total cost (TC) , turunan fungsi TC pada setiap tingkat output menunjukkan biaya marginal atau marginal cost (MC)pada output tersebut.
Kaidah Konstanta
Mencari turunan dari suatu fungsi bukanlah merupakan pekerjaan yang sulit. Turunan dari sebuah konstanta selalu nol, oleh karena itu jika Y = sebuah konstanta, maka :
dy/dx= 0
Turunan dari fungsi pangkat seperti Y = aX b , dimana a dan b merupakan konstanta adalah sama dengan pangkat (exponent) b dikalikan dengan koefisien a dikalikan dengan variable X pangkat b-1 ;
Y = a X b
Y =b.a X (b-1)
Contoh
Y = 2X 3
Maka
dy/dx = 3.2X (3-1)
dy/dx = 3.2X 2
dy/dx = 6X 2
Proses optimisasi seringkali mengharuskan seseorang untuk mendapatkan nilai maksimum atau minimum dari suatu fungsi. Jika suatu fungsi berada pada keadaan maksimum atau minimum, maka slope atau nilai marginal pasti nol. Berikut ini fungsi laba
Laba (L) = -1000 + 400Q – 2Q 2
Disini = laba total dan Q adalah jumlah output. Jika output sama dengan nol , maka perusahaan tersebut akan rugi Rp 10.000,- (biaya tetap Rp 10.000,-) tetapi jika output meningkat , maka laba akan meningkat. Titik impas atau breakeven point dapat dicapai pada saat output berjumlah 29 unit (penghitungan dapat dilakukan dengan rumus abc).Laba maksimum dicapai pada saat output sebesar 100 unit dan setelah itu laba menurun.
Laba maksimum tersebut dapat diperoleh dengan menggunakan turunan (marginal) dari fungsi laba tersebut, kemudian menentukan nilai Q yang membuat turunan (marginal) tersebut sama dengan nol
Laba (L) = -1000 + 400Q – 2Q 2
Marginal (ML) dL/dQ = 400 -4Q
Dengan menyamakan turunan tersebut sama dengan nol maka ;
400 – 4Q =0
4Q = 400
Q =100 unit
Oleh karena jika Q = 100, maka laba marginal sama dengan nol dan laba total adalah maksimum